Exercise
$\left(\frac{2}{7}p+13\right)\left(\frac{2}{7}p+8\right)$
Limit of this function
$\lim_{x\to0}\left(\left(\frac{2}{7}p+13\right)\left(\frac{2}{7}p+8\right)\right)=\left(\frac{2}{7}p+13\right)\left(\frac{2}{7}p+8\right)$
See step-by-step solution
Derivative of this function
$\frac{d}{dp}\left(\left(\frac{2}{7}p+13\right)\left(\frac{2}{7}p+8\right)\right)=\frac{2}{7}\left(\frac{2}{7}p+8\right)+\frac{2}{7}\left(\frac{2}{7}p+13\right)$
See step-by-step solution
Integral of this function
$\int\left(\frac{2}{7}p+13\right)\left(\frac{2}{7}p+8\right)dp=\left(\frac{2}{7}p+13\right)\left(\frac{2}{7}p+8\right)p+C_0$
See step-by-step solution