Sign up to see the steps for this solution and much more.
$\lim_{x\to-\infty}\left(\frac{\sqrt{9x^2-x}}{3x^2-5}\right)$
$\lim_{x\to\infty}\left(\frac{x}{x^2\:-\:7}\right)$
$\left(x^4+3x^3+6\right)\left(2x-1\right)$
$\left(7x-2\right)\left(2x+4\right)$
$3r\:\ge\:27$
$\left(z-2\right)\left(z+2\right)$
$\int\left(\frac{1}{3}x^2+\frac{4}{3}x^{\frac{2}{3}}-\frac{5}{312}x^{\frac{5}{4}}\right)x^{\frac{1}{3}}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!