limh→0(h2ehe3h−3h)\lim_{h\to0}\left(\frac{h^2e^h}{e^{3h}-3h}\right)h→0lim(e3h−3hh2eh)
tanysec y+1=sec y−1tan y\frac{\tan y}{sec\:y+1}=\frac{sec\:y-1}{tan\:y}secy+1tany=tanysecy−1
dydx=xe7x+y5y4\frac{dy}{dx}=\frac{xe^{7x+y^5}}{y^4}dxdy=y4xe7x+y5
∫x+1(x2+5)(x−1)dx\int\frac{x+1}{\left(x^2+5\right)\left(x-1\right)}dx∫(x2+5)(x−1)x+1dx
x2−6x≥−5 x2-6x\ge-5\:x2−6x≥−5
∫ csc x3 dx\int\:csc\:\frac{x}{3}\:dx∫csc3xdx
32x.2x=203^{2x}.2^x=2032x.2x=20
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!