∫2cos(ln(x))xdx\int\frac{2\cos\left(\ln\left(x\right)\right)}{x}dx∫x2cos(ln(x))dx
dydx=12e3xy4\frac{dy}{dx}=\frac{12e^{3x}}{y^4}dxdy=y412e3x
x+6(x−2)x+6\left(x-2\right)x+6(x−2)
limx→0((4sin(7x)ln(7x)))\lim_{x\to0}\left(\left(4sin\left(7x\right)ln\left(7x\right)\right)\right)x→0lim((4sin(7x)ln(7x)))
−285− −12-285-\:-12−285−−12
(5x+6)(x+3)\left(5x+6\right)\left(x+3\right)(5x+6)(x+3)
(1)3 +(1)2 (2)−(1)(2)2 +(2)3\left(1\right)^{3\:}+\left(1\right)^2\:\left(2\right)-\left(1\right)\left(2\right)^2\:+\left(2\right)^3(1)3+(1)2(2)−(1)(2)2+(2)3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!