Exercise
$\int_1^8\left(\frac{\left(2x\right)}{\left(1+x^4\right)}\right)dx$
Final answer to the exercise
$\frac{0.7071068\arctan\left(\frac{8}{\sqrt{1-8\sqrt{2}}}\right)\sqrt{1-\sqrt{2}}-0.7071068\arctan\left(\frac{1}{\sqrt{1-\sqrt{2}}}\right)\sqrt{1-8\sqrt{2}}}{\sqrt{1-8\sqrt{2}}\sqrt{1-\sqrt{2}}}+\frac{-169\arctan\left(\frac{8}{\sqrt{1+8\sqrt{2}}}\right)\sqrt{1+\sqrt{2}}+169\arctan\left(\frac{1}{\sqrt{1+\sqrt{2}}}\right)\sqrt{1+8\sqrt{2}}}{239\sqrt{1+8\sqrt{2}}\sqrt{1+\sqrt{2}}}$