Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
∫x(2x−1)43dx\int\frac{x}{\sqrt[3]{\left(2x-1\right)^4}}dx∫3(2x−1)4xdx
(2xw−4)−24x2w−1\frac{\left(2xw^{-4}\right)^{-2}}{4x^2w^{-1}}4x2w−1(2xw−4)−2
∫( x45x+3)dx\int\left(\:x^4\sqrt{5x+3}\right)dx∫(x45x+3)dx
limx→∞(x6−5x2+3x3−27x3−4x2+3)\lim_{x\to\infty}\left(\frac{x^6-5x^2+3x^3-2}{7x^3-4x^2+3}\right)x→∞lim(7x3−4x2+3x6−5x2+3x3−2)
6x2−4x+12x+4\frac{6x^2-4x+12}{x+4}x+46x2−4x+12
x3−4x2+xx\frac{x^3-4x^2+x}{x}xx3−4x2+x
tan2=sec2−1\tan^2=\sec^2-1tan2=sec2−1
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!