f(x)=(x+1)2(x−1)2f\left(x\right)=\frac{\left(x+1\right)^{2}}{\left(x-1\right)^{2}}f(x)=(x−1)2(x+1)2
6z2+2z6z^2+2z6z2+2z
x3−4x−10x2−x−6\frac{x^3-4x-10}{x^2-x-6}x2−x−6x3−4x−10
limx→0(2x−(x+2i)2(x2+4)2)\lim_{x\to0}\left(\frac{2x-\left(x+2i\right)^2}{\left(x^2+4\right)^2}\right)x→0lim((x2+4)22x−(x+2i)2)
m2−8m+25m^2-8m+25m2−8m+25
(2x2−5y)3\left(2x^2-5y\right)^3(2x2−5y)3
∫−16x2+1x2dx\int\frac{\sqrt{-16x^2+1}}{x^2}dx∫x2−16x2+1dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!