Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
x+1≥3−2xx+1\geq 3-2xx+1≥3−2x
dxdt=x+1\frac{dx}{dt}=x+1dtdx=x+1
ydydx=(1−y2)senx \:y\frac{dy}{dx}=\left(1-y^2\right)senx\:ydxdy=(1−y2)senx
(1+cotx2)cos(x)\left(1+\cot x^2\right)\cos\left(x\right)(1+cotx2)cos(x)
(4x−5)(3x−2)=(3x−2)2\left(4x-5\right)\left(3x-2\right)=\left(3x-2\right)^2(4x−5)(3x−2)=(3x−2)2
cos2(x)+cos(x)=−1cos2\left(x\right)+cos\left(x\right)=-1cos2(x)+cos(x)=−1
x2+9x+21x^2+9x+21x2+9x+21
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!