Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
dydx=e8x+y\frac{dy}{dx}=e^{8x+y}dxdy=e8x+y
4sin(3x)+sin(x)+sin(2x)4\sin\left(3x\right)+\sin\left(x\right)+\sin\left(2x\right)4sin(3x)+sin(x)+sin(2x)
(7x2−2y3)(7x2+12y3)\left(7x^2-2y^3\right)\left(7x^2+12y^3\right)(7x2−2y3)(7x2+12y3)
s2t2p\sqrt{s^2}t^2ps2t2p
dydx=1−(yx)\frac{dy}{dx}=1-\left(\frac{y}{x}\right)dxdy=1−(xy)
∫cos(10x)dx\int\cos\left(10x\right)dx∫cos(10x)dx
∫cos1+sen2dt\int\frac{cos}{\sqrt{1+sen^2}}dt∫1+sen2cosdt
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!