$\lim_{x\to\infty}\left(\frac{4x+3}{\ln\left(2+4e^x\right)}\right)$
$\left(3a\right)^3\left(2a\right)^2$
$\left(2xy^2-5\right)dx+\left(2x^2y+6\right)dy=0$
$\frac{10\left(-30\right)}{6}$
$\int\frac{x^2+1}{2x^2+x-3}dx$
$a^4+4a^2+4$
$\lim_{x\to0}\left(\frac{-4\left(0\right)}{\sqrt{2-\left(0\right)}-\sqrt[4]{4}}.\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!