Exercise
$\int_0^{\frac{\pi\:}{2}}\:\tan\:^2\left(x\right)\cdot\:\sec\:^5\left(x\right)$
Step-by-step Solution
Final answer to the exercise
$\ln\left(\sec\left(\frac{\pi }{2}\right)+\tan\left(\frac{\pi }{2}\right)\right)\cdot \left(-\frac{1}{16}\right)\ln\left(\sec\left(\frac{\pi }{2}\right)+\tan\left(\frac{\pi }{2}\right)\right)+\sec\left(\frac{\pi }{2}\right)^2\cdot \tan\left(\frac{\pi }{2}\right)^2\cdot -\frac{1}{16}+\sec\left(\frac{\pi }{2}\right)^{3}\cdot \tan\left(\frac{\pi }{2}\right)^2\cdot \left(\frac{1}{6}\cdot \sec\left(\frac{\pi }{2}\right)^2+\frac{5}{24}\right)-\frac{1}{4}\cdot \sec\left(\frac{\pi }{2}\right)^3\tan\left(\frac{\pi }{2}\right)$