$\left(x^2+2x-5\right)\left(8x^2+x-6\right)$
$\lim_{x\to\infty}\left(\frac{\sqrt{x}}{5\sqrt{x+1}}\right)$
$\int\left(\frac{2x-3}{3x^2+4x-7}\right)dx$
$4x^2+8+4$
$9x^2-10x+25$
$\frac{\csc\left(-x\right)}{\sec\left(-x\right)}-\frac{\cos\left(-x\right)}{\sin\left(-x\right)}$
$\int_0^{\frac{2}{3}}\sqrt{4-9x^2}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!