$\frac{\cot\left(x\right)}{1+\tan\left(x\right)}$
$\lim_{x\to\infty}\left(\frac{11ln\left(x\right)}{x}\right)$
$\int\left(\frac{y-\sqrt{1+y^2}}{1+y^2}\right)dy$
$6x^7+3x^4-9x^4$
$3x+8x^2+x+x^2+5$
$3x\ge13$
$\frac{dy}{dx}=\frac{-y^2}{x^3}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!