dydx=xex−ln(y2)\frac{dy}{dx}=xe^{x-ln\left(y^2\right)}dxdy=xex−ln(y2)
dydx(4cos(x)sin(y)=1)\frac{dy}{dx}\left(4\cos\left(x\right)\sin\left(y\right)=1\right)dxdy(4cos(x)sin(y)=1)
2632\frac{\sqrt{6}}{\sqrt{3}}236
(9v3−56v2+14v+49)(9v+7)\frac{\left(9v^3-56v^2+14v+49\right)}{\left(9v+7\right)}(9v+7)(9v3−56v2+14v+49)
(x2+9)(6x3−6)\left(x^2+9\right)\left(6x^3-6\right)(x2+9)(6x3−6)
x3+3x2−7x+15x^3+3x^2-7x+15x3+3x2−7x+15
∫x2x+13dx\int\frac{x}{\sqrt[3]{2x+1}}dx∫32x+1xdx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!