$\int_0^0\left(4x\sin\left(\pi x^2\right)\right)dx$
$2a^2bc^3-5a^2bc^3-2a^2bc^3$
$\lim_{x\to infinity}\left(1+x\right)^{\left(\frac{3}{x}\right)}$
$\frac{tan\left(y\right)\left(tan\left(x\right)+cot\left(y\right)\right)}{tan\left(x\right)}=tan\left(y\right)+cot\left(x\right)$
$\frac{4x^3-2x^2+3x+2}{x-2}$
$24+\infty$
$\int1+\cos^2\left(x\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!