Exercise
$\int-1\sin\left(x\right)\cos\left(x\right)dx$
Step-by-step Solution
Learn how to solve problems step by step online. Solve the trigonometric integral int(-sin(x)cos(x))dx. Simplify -\sin\left(x\right)\cos\left(x\right) into \frac{-\sin\left(2x\right)}{2} by applying trigonometric identities. Take the constant \frac{1}{2} out of the integral. The integral of a function times a constant (-1) is equal to the constant times the integral of the function. Multiply the fraction and term in -\left(\frac{1}{2}\right)\int\sin\left(2x\right)dx.
Solve the trigonometric integral int(-sin(x)cos(x))dx
Final answer to the exercise
$\frac{1}{4}\cos\left(2x\right)+C_0$