$\left(x^2+2x\right)\left(2x^2-3x\right)$
$\frac{x-3}{3}+\frac{2x-1}{6}$
$\lim_{x\to\infty}\frac{\ln\left(x^5\right)}{\ln\left(x+3\right)^3}$
$1+\left(-41\right)+\left(-7\right)$
$\int\:5\sqrt[5]{3-x}dx$
$\sin x=\frac{3}{2}$
$\lim_{n\to0}\left(\frac{n^3-3n^2-4n}{n^3+3x^2-4x}\right)^n$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!