$x^2y^'-2y=0$
$\lim_{x\to\frac{2}{\pi}}\left(x-\frac{\pi}{2}\right)secx$
$\left(2mn^2\right)\left(2mn^2\right)\left(2mn^2\right)$
$\int\frac{\left(x^2+4x-3\right)}{\left(x-3\right)\left(x^2+9\right)}dx$
$\lim\:_{x\to\:3}\left(\frac{3e^{2x+6}+x^2-12}{x^3+6x^2+9x}\right)$
$\left(x^2\left(x^2+2y^2\right)+\left(y^2+z^2\right)\left(y+z\right)\left(y-z\right)\right)$
$93.24+359.2+5.864$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!