Exercise
$\int senx\:+\:7cosx-1dx$
Step-by-step Solution
Learn how to solve trigonometric integrals problems step by step online. Solve the trigonometric integral int(sin(x)+7cos(x)+-1)dx. Expand the integral \int\left(\sin\left(x\right)+7\cos\left(x\right)-1\right)dx into 3 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\sin\left(x\right)dx results in: -\cos\left(x\right). The integral \int7\cos\left(x\right)dx results in: 7\sin\left(x\right). The integral \int-1dx results in: -x.
Solve the trigonometric integral int(sin(x)+7cos(x)+-1)dx
Final answer to the exercise
$-\cos\left(x\right)+7\sin\left(x\right)-x+C_0$