$f\left(x\right)=x^3-\frac{1}{x^3}$
$3\pi\cdot8$
$\int xe^{-4x^2}dx$
$\frac{dy}{dx}=\sqrt{1+y^2}$
$3\:\cdot\:\:sin\:x^2\:-2\:\cdot\:\sqrt{2}\cdot\:\:sin\:x\:-\:cos\:x^2\:+1\:=0$
$\int_{-00}^{00}\left(\frac{1}{2x^2\left(x-1\right)}\right)dx$
$\sin\left(-\frac{\pi}{6}\right)\cos\left(\frac{\pi}{5}\right)+\cos\left(\frac{\pi}{6}\right)\sin\left(-\frac{\pi}{5}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!