$\left(16\right)\cdot\left(-12\right)$
$\lim_{x\to0}\left(e^x+7x\right)^{\frac{9}{x}}$
$\frac{26}{x+3}+\frac{2}{x^2-9}=\frac{4}{x-3}$
$\frac{x^3-2x^2+7}{x^2+4x+1}$
$\frac{t^{-2}}{t^{-1}}$
$\frac{x^9}{x+1}$
$\left(4x+7\right)\left(3x+12\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!