$\frac{dy}{dx}=\cos\left(x-1\right)+x^2$
$\int\:\:\frac{1}{x\left(2x+3\right)}dx$
$\frac{x^2-11x+10}{x-1}$
$\sqrt{3}\cdot\:\cos\:^2\left(x\right)-\frac{3}{2}\cos\:\left(x\right)=0$
$\lim_{x\to\infty}\left(\frac{x^2+x\sin\left(x\right)}{\cos\left(3x\right)-2x^2}\right)$
$4x^2+20x+125$
$4-2\left(5+6\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!