Exercise

$\int\sqrt{-4x^2-20x-9}dx$

Step-by-step Solution

1

Rewrite the expression $\sqrt{-4x^2-20x-9}$ inside the integral in factored form

$\int\sqrt{4\left(-\left(x+\frac{5}{2}\right)^2+4\right)}dx$
2

Rewrite the expression $\sqrt{4\left(-\left(x+\frac{5}{2}\right)^2+4\right)}$ inside the integral in factored form

$\int2\sqrt{-\left(x+\frac{5}{2}\right)^2+4}dx$
3

We can solve the integral $\int2\sqrt{-\left(x+\frac{5}{2}\right)^2+4}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\sin\left(\theta \right)-\frac{5}{2}$
4

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\cos\left(\theta \right)d\theta$
5

Substituting in the original integral, we get

$\int4\sqrt{-\left(2\sin\left(\theta \right)+\frac{0}{2}\right)^2+4}\cos\left(\theta \right)d\theta$
6

Simplifying

$\int4\sqrt{-\left(2\sin\left(\theta \right)\right)^2+4}\cos\left(\theta \right)d\theta$
7

The power of a product is equal to the product of it's factors raised to the same power

$\int4\sqrt{- 4\sin\left(\theta \right)^2+4}\cos\left(\theta \right)d\theta$
8

Factoring by $4$

$\int4\sqrt{4\left(1-\sin\left(\theta \right)^2\right)}\cos\left(\theta \right)d\theta$
9

The power of a product is equal to the product of it's factors raised to the same power

$\int4\cdot 2\sqrt{1-\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
10

Applying the trigonometric identity: $1-\sin\left(\theta \right)^2 = \cos\left(\theta \right)^2$

$\int4\cdot 2\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
Why is 1 - sin(x)^2 = cos(x)^2 ?
11

The integral of a function times a constant ($4$) is equal to the constant times the integral of the function

$4\int\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
12

Simplify $\sqrt{\cos\left(\theta \right)^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$4\int\cos\left(\theta \right)\cos\left(\theta \right)d\theta$
13

When multiplying two powers that have the same base ($\cos\left(\theta \right)$), you can add the exponents

$4\int\cos\left(\theta \right)^2d\theta$
14

Apply the formula: $\int\cos\left(\theta \right)^2dx$$=\frac{1}{2}\theta +\frac{1}{4}\sin\left(2\theta \right)+C$, where $x=\theta $

$4\left(\frac{1}{2}\theta +\frac{1}{4}\sin\left(2\theta \right)\right)$
15

Express the variable $\theta$ in terms of the original variable $x$

$4\left(\frac{1}{2}\arcsin\left(\frac{x+\frac{5}{2}}{2}\right)+\frac{1}{4}\sin\left(2\theta \right)\right)$
16

Using the sine double-angle identity: $\sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right)$

$4\left(\frac{1}{2}\arcsin\left(\frac{x+\frac{5}{2}}{2}\right)+2\left(\frac{1}{4}\right)\sin\left(\theta \right)\cos\left(\theta \right)\right)$
Why does sin(2x) = 2sin(x)cos(x) ?
17

Multiply the fraction and term in $2\left(\frac{1}{4}\right)\sin\left(\theta \right)\cos\left(\theta \right)$

$4\left(\frac{1}{2}\arcsin\left(\frac{x+\frac{5}{2}}{2}\right)+\frac{1}{2}\sin\left(\theta \right)\cos\left(\theta \right)\right)$
18

Express the variable $\theta$ in terms of the original variable $x$

$4\left(\frac{1}{2}\arcsin\left(\frac{x+\frac{5}{2}}{2}\right)+\frac{\left(x+\frac{5}{2}\right)\sqrt{-\left(x+\frac{5}{2}\right)^2+4}}{8}\right)$
19

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$4\left(\frac{1}{2}\arcsin\left(\frac{x+\frac{5}{2}}{2}\right)+\frac{\left(x+\frac{5}{2}\right)\sqrt{-\left(x+\frac{5}{2}\right)^2+4}}{8}\right)+C_0$

Final answer to the exercise

$4\left(\frac{1}{2}\arcsin\left(\frac{x+\frac{5}{2}}{2}\right)+\frac{\left(x+\frac{5}{2}\right)\sqrt{-\left(x+\frac{5}{2}\right)^2+4}}{8}\right)+C_0$

Try other ways to solve this exercise

  • Choose an option
  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Integrate by trigonometric substitution
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • Load more...
Can't find a method? Tell us so we can add it.
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Access in depth explanations with descriptive diagrams.

Choose between multiple solving methods.

Download unlimited solutions in PDF format.

Premium access on our iOS and Android apps.

Join 1M+ students worldwide in problem solving.

Choose the plan that suits you best:
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account