Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Simplify $\sin\left(6x\right)\cos\left(4x\right)$ into $\frac{\sin\left(10x\right)+\sin\left(2x\right)}{2}$ by applying trigonometric identities
Learn how to solve problems step by step online.
$\int\frac{\sin\left(10x\right)+\sin\left(2x\right)}{2}dx$
Learn how to solve problems step by step online. Solve the trigonometric integral int(sin(6x)cos(4x))dx. Simplify \sin\left(6x\right)\cos\left(4x\right) into \frac{\sin\left(10x\right)+\sin\left(2x\right)}{2} by applying trigonometric identities. Take the constant \frac{1}{2} out of the integral. Expand the integral \int\left(\sin\left(10x\right)+\sin\left(2x\right)\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \frac{1}{2}\int\sin\left(10x\right)dx results in: -\frac{1}{20}\cos\left(10x\right).