$7\cdot\left(-1\right)\cdot4$
$\int_1^{\infty}\left(\frac{1}{4x+8+x^2}\right)dx$
$\left(\frac{1}{2}a+2a^2\right)^3$
$\frac{m+n}{2m+2n+4}-\frac{2}{m^2+2mn+2m+2n+n^2}$
$\frac{dy}{dx}=\frac{\left(y+2\right)}{\left(3y+4\right)}$
$3 x ^ { 5 } - 2 x ^ { 2 } + 9 x ^ { 4 } - 5 x + 3$
$2x+7\le4-x$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!