$\frac{1}{1-sin\left(x\right)}-\frac{1}{1+\sin\left(x\right)}=2\tan\left(x\right)sec\left(x\right)$
$tan\left(x\right)+cot\left(x\right)=sec\left(x\right)cosec\left(x\right)$
$\frac{1+\cos2x}{\sin2x}=\cot x$
$sec\left(x\right)-tan\left(x\right)sin\left(x\right)=\frac{1}{sec\left(x\right)}$
$\tan\left(x\right)+\cot\left(x\right)=\sec\left(x\right)\csc\left(x\right)$
$\tan\left(a\right)+\cot\left(a\right)=\sec\left(a\right)\csc\left(a\right)$
$\sec x-\sin x\tan x=\cos x$
Integration assigns numbers to functions in a way that can describe displacement, area, volume, and other concepts that arise by combining infinitesimal data.
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!