$\int\frac{2x^2}{\sqrt{1-x^2}}dx$
$\left(\sin\left(x\right)+\cos\left(x\right)\right)^2=1+\frac{2\sin\left(x\right)}{\cos\left(x\right)}$
$\left(-x^7y^{\frac{1}{2}}-4a^4b^4\right)^4$
$f\left(x\right)=\left(x-3\right)\left(x-2\right)-\left(x-2\right)\left(1-x\right)+\left(1-x\right)$
$\int_{-2}^2\left(\frac{1}{x^2}\right)dx$
$-\frac{5a^2+8ab-21b^2}{a+3b}$
$\left(3xy-xy^2\right)y'=-y+3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!