Exercise
$\int\left(2x^2-5x.+3\right)^{10}dx$
Step-by-step Solution
Final answer to the exercise
$\frac{1024}{21}x^{21}-1280\cdot +3x^{20}+\frac{11520}{19}\cdot \left(-5+3\right)^{2}x^{19}+\frac{2560}{3}\cdot \left(-5+3\right)^{3}x^{18}+\frac{13440}{17}\cdot \left(-5+3\right)^{4}x^{17}+504\cdot \left(-5+3\right)^{5}x^{16}+224\cdot \left(-5+3\right)^{6}x^{15}+\frac{480}{7}\cdot \left(-5+3\right)^{7}x^{14}+\frac{180}{13}\cdot \left(-5+3\right)^{8}x^{13}+\frac{5}{3}\cdot \left(-5+3\right)^{9}x^{12}+\frac{\left(-5+3\right)^{10}x^{11}}{11}+C_0$