$\lim_{x\to\infty}\left(1+\frac{8}{x}\right)^{\frac{x}{7}}$
$495^{2}-145+1$
$\sin\left(45\right)\sin\left(x\right)+\cos\left(45\right)\cos\left(x\right)$
$\int\left(\frac{cot\left(\frac{8}{s^2}\right)}{s^3}\right)ds$
$9u^5-12u^4-21u^3$
$\lim_{y\to0}\left(\frac{e^x\left(e^y-1\right)}{y}\right)$
$f\left(x\right)=\left(x+9\right)^4\left(2x-9\right)^3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!