∫3x+2x3+xdx\int\frac{3x+2}{x^3+x}dx∫x3+x3x+2dx
x2(x+2)3−(x+1)5x^2\left(x+2\right)^3-\left(x+1\right)^5x2(x+2)3−(x+1)5
limx→21−2x−33x+3−3\lim_{x\to2}\frac{1-\sqrt{2x-3}}{\sqrt{3x+3}-3}x→2lim3x+3−31−2x−3
12∫0π2(−sin4(x)cos2(x))dx12\int_0^{\frac{\pi}{2}}\left(-\sin^4\left(x\right)\cos^2\left(x\right)\right)dx12∫02π(−sin4(x)cos2(x))dx
(2a2b+3c3)2\left(2a^2b+3c^3\right)^2(2a2b+3c3)2
3x+1>2\frac{3}{x+1}>2x+13>2
tan2x−2=tanx\tan^2x-2=\tan xtan2x−2=tanx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!