Sign up to see the steps for this solution and much more.
$\frac{dy}{dx}=\frac{y}{2x+3y}$
$a+b.3=a+3b$
$x^2-\frac{2x}{5}$
$\int^3\sqrt{20+3x^3}\left(x^2\right)dx$
$\left(\frac{x^2}{4}+\frac{xy\sin\left(\frac{y}{x}\right)}{4}\right)\frac{dy}{dx}=\frac{y^2\sin\left(\frac{y}{x}\right)}{4}$
$\int\left(\sqrt{1+y^2}y\right)dy$
$\frac{dy}{dx}=\frac{-y^2\sin\left(x\right)}{\cos^2\left(x\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!