$\lim_{x\to0}\left(\frac{\cos\left(x\right)-1}{e^2-x-1}\right)$
$\left(\sin^2\left(x\right)\cos\left(y\right)\right)+\left(\cos^2\left(x\right)\cos\left(y\right)\right)=\cos\left(y\right)$
$x^2-10x+25=17$
$\int\frac{x^2-x-20}{\left(x-2\right)^3}dx$
$\left(5a\:+\:4b\:-\:6c\right)\:+\:\left(3a\:-\:7b\:+\:5c\right)\:+\:\left(2b\:-\:2a\:+\:2c\right)$
$2x+5=5x+26$
$3x-2y+5y-4x-3x+y$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!