$\int\:\frac{1}{\left(x^2-x-6x\right)\left(x^2-2x-8\right)}dx$
$\left(-48\right)-\left(-72\right)$
$\frac{d}{dx}\left(\frac{\left(6x^2+2\right)^2}{x-1}\right)$
$\lim_{x\to0}\left(\frac{e^x-\left(1-20x\right)}{x}\right)$
$\frac{d}{dx}\left(\left(x^{11}\right)\left(e^x\right)\right)$
$18z-22$
$\int_0^{\infty}\frac{\left(1+x^2\right)}{\sqrt{x}}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!