$\lim_{x\to\infty}\left(\frac{2x-1}{2x+5}\right)^{\left(\frac{2x+1}{3}\right)}$
$\lim_{x\to\frac{\sqrt{3}}{2}}\frac{\left(\arcsin\:\left(x\right)-\arcsin\:\left(\frac{\sqrt{3}}{2}\right)\right)}{x-\frac{\sqrt{3}}{2}}$
$12csc^2\left(x\right)+5cot\left(x\right)=15$
$\lim_{x\to+infinito}\left(x\left(e^{\frac{1}{x}}-1\right)\right)$
$\arcsin\left(\sin\left(x\right)\right)=0$
$2\cdot7x\cdot6$
$4.7x-5.48>11.44$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!