$\lim_{x\to\infty}\frac{2^{x+3}}{3^{x+1}}$
$sec\left(x\right)\cdot\:\:sin^2\left(x\right)+cos\left(x\right)$
$3b^3-3b+2b^3+4b$
$\frac{\left(\cos\left(x\right)+\sin\left(x\right)\right)^2}{\sin\left(x\right)}=\csc\left(x\right)+2\cos\left(x\right)$
$2s^3+3s^2-3s-4$
$0.94-0.27$
$\int_{-\infty}^{-1}x^{-\frac{15}{7}}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!