$\lim_{x\to3}\left(\frac{x^2-2x-3}{x^2-5x+6}\right)$
$\frac{2-2x}{x}\ge2$
$\frac{8x^4+4x^3+6x^2}{2x^2+1}$
$xy'=1+y^2$
$-20+-15+-10+-5+0+1+2+3$
$\int_1^{32}x^{-\frac{6}{5}}dx$
$\int_x^{\infty}\left(\frac{\ln\left(x-1\right)-\ln\left(x+1\right)}{2}\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!