Exercise
$\int\frac{x^{\frac{1}{2}}+1}{x^{\frac{7}{6}}+3x}dx$
Step-by-step Solution
Learn how to solve problems step by step online. Find the integral int((x^(1/2)+1)/(x^(7/6)+3x))dx. Expand the fraction \frac{\sqrt{x}+1}{\sqrt[6]{x^{7}}+3x} into 2 simpler fractions with common denominator \sqrt[6]{x^{7}}+3x. Expand the integral \int\left(\frac{\sqrt{x}}{\sqrt[6]{x^{7}}+3x}+\frac{1}{\sqrt[6]{x^{7}}+3x}\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{1}{\sqrt[6]{x^{7}}+3x}dx results in: \frac{1}{3}\ln\left(\sqrt[6]{x^{7}}+3x\right). Gather the results of all integrals.
Find the integral int((x^(1/2)+1)/(x^(7/6)+3x))dx
Final answer to the exercise
$54\ln\left|\sqrt[6]{x}+3\right|-36\sqrt[6]{x}+3\left(\sqrt[6]{x}+3\right)^2+\frac{1}{3}\ln\left|\sqrt[6]{x^{7}}+3x\right|+C_1$