$\int\sqrt[2]{\left(0.4-y\right)}\cdot2y\:dy$
$\lim_{x\to-\infty}\frac{\sqrt{1+z^2}-\sqrt{5-2z+16z^2}}{2z+3}$
$\frac{\ln\left(1.786\right)}{0.04}$
$\frac{dy}{dx}=y^2\sin\left(3x\right)$
$\left(\frac{3x^2-5y}{3}\right)^2$
$2b+4c+3a^3-5a-3b-c^2$
$-6x^2+3x+18$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!