Exercise
$\int\frac{4x-7}{\left(x-2\right)\left(x-1\right)^2}dx$
Step-by-step Solution
Learn how to solve integrals by partial fraction expansion problems step by step online. Find the integral int((4x-7)/((x-2)(x-1)^2))dx. Rewrite the fraction \frac{4x-7}{\left(x-2\right)\left(x-1\right)^2} in 3 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{1}{x-2}+\frac{3}{\left(x-1\right)^2}+\frac{-1}{x-1}\right)dx into 3 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{1}{x-2}dx results in: \ln\left(x-2\right). The integral \int\frac{3}{\left(x-1\right)^2}dx results in: \frac{-3}{x-1}.
Find the integral int((4x-7)/((x-2)(x-1)^2))dx
Final answer to the exercise
$\ln\left|x-2\right|+\frac{-3}{x-1}-\ln\left|x-1\right|+C_0$