x(x+5)5x\left(x+5\right)^5x(x+5)5
limx→0(ln(x)−1x2)\lim_{x\to0}\left(\ln\left(x\right)-\frac{1}{x^2}\right)x→0lim(ln(x)−x21)
(5xyz+1)2\left(5xyz+1\right)^2(5xyz+1)2
∫20t⋅sin(wt)dt\int20t\cdot\sin\left(wt\right)dt∫20t⋅sin(wt)dt
(1+secx)(cosecx−cotx)=tanx\left(1+secx\right)\left(cosecx-cotx\right)=tanx(1+secx)(cosecx−cotx)=tanx
∫2x2+5x−4(7x−1)dx\int\frac{2x^2+5x-4}{\left(7x-1\right)}dx∫(7x−1)2x2+5x−4dx
a2e7−a2e4a^2e^7-a^2e^4a2e7−a2e4
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!