Exercise
$\int\frac{47}{x^2-7x}dx$
Step-by-step Solution
Learn how to solve integrals by partial fraction expansion problems step by step online. Find the integral int(47/(x^2-7x))dx. Rewrite the expression \frac{47}{x^2-7x} inside the integral in factored form. Rewrite the fraction \frac{47}{x\left(x-7\right)} in 2 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{-47}{7x}+\frac{47}{7\left(x-7\right)}\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{-47}{7x}dx results in: -\frac{47}{7}\ln\left(x\right).
Find the integral int(47/(x^2-7x))dx
Final answer to the exercise
$-\frac{47}{7}\ln\left|x\right|+\frac{47}{7}\ln\left|x-7\right|+C_0$