$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^2$
$3p^3+4+2p^3+3p^4-6$
$\lim_{x\to0}\left(\frac{1}{x}-\frac{2}{\ln\left(1+2x\right)}\right)$
$\frac{dy}{dx}=\frac{\left(3x^2-5\right)}{sin\left(y\right)}$
$q\left(x\right)=\left(3x^3+4x\right)^x$
$2e^{x+1}\:=\:9$
$\left(11x-10y\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!