23cos(x) = sin(4x)2\sqrt{3}\cos\left(x\right)\:=\:\sin\left(4x\right)23cos(x)=sin(4x)
∫238xdx\int_2^38xdx∫238xdx
−1−2−1-1-2-1−1−2−1
((2xe(2xy))+cos(y))dy+(2ye(2xy))dx=0\left(\left(2xe^{\left(2xy\right)}\right)+cos\left(y\right)\right)dy+\left(2ye^{\left(2xy\right)}\right)dx=0((2xe(2xy))+cos(y))dy+(2ye(2xy))dx=0
∫−ππ(sin((4x+9π)18+3π))dx\int_{-\pi}^{\pi}\left(\sin\left(\frac{\left(4x+9\pi\right)}{18}+3\pi\right)\right)dx∫−ππ(sin(18(4x+9π)+3π))dx
3(−3f+7)3\left(-3f+7\right)3(−3f+7)
(−52).5\left(-52\right).5(−52).5
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!