dydx=(1−2x)y2\frac{dy}{dx}=\left(1-2x\right)y^2dxdy=(1−2x)y2
cosx = 45cosx\:=\:\frac{4}{5}cosx=54
∫−7(ln(x))2xdx\int-\frac{7\left(ln\left(x\right)\right)^2}{x}dx∫−x7(ln(x))2dx
g(s)=s2−s−3s(s−1)(s+3)g\left(s\right)=\frac{s^2-s-3}{s\left(s-1\right)\left(s+3\right)}g(s)=s(s−1)(s+3)s2−s−3
250−120+60−310250-120+60-310250−120+60−310
7cos2θ+6sinθ −10=−47\cos^2\theta+6\sin\theta\:-10=-47cos2θ+6sinθ−10=−4
dydx+4yx−10x=0\frac{dy}{dx}+\frac{4y}{x}-10x=0dxdy+x4y−10x=0
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!