(x2+x4)⋅(y)\left(x^2+x^4\right)\cdot\left(y\right)(x2+x4)⋅(y)
x(x2+1)2=x5−x\frac{x}{\left(x^2+1\right)^2}=x^5-x(x2+1)2x=x5−x
18+78\frac{1}{8}+\frac{7}{8}81+87
∫sin(x)cos(x)(6+v4)8dv\int_{sin\left(x\right)}^{cos\left(x\right)}\left(6+v^4\right)^8dv∫sin(x)cos(x)(6+v4)8dv
dydx=(4x−2)(y2+2y−3)x3−x2−2x\frac{dy}{dx}=\frac{\left(4x-2\right)\left(y^2+2y-3\right)}{x^3-x^2-2x}dxdy=x3−x2−2x(4x−2)(y2+2y−3)
8x=4x+128x=4x+128x=4x+12
∫xn−1 a+bxn dx\int x^{n-1}\:\sqrt{a+bx^n}\:dx∫xn−1a+bxndx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!