Exercise
$\int\frac{1}{\left(sinx+cosx\right)^3}dx$
Step-by-step Solution
Intermediate steps
1
Simplify $\frac{1}{\left(\sin\left(x\right)+\cos\left(x\right)\right)^3}$ into $\frac{\csc\left(x+45\right)^3}{\sqrt{\left(2\right)^{3}}}$ by applying trigonometric identities
$\int\frac{\csc\left(x+45\right)^3}{\sqrt{\left(2\right)^{3}}}dx$
Explain this step further
2
Take the constant $\frac{1}{\sqrt{\left(2\right)^{3}}}$ out of the integral
$\frac{1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(x+45\right)^3dx$
3
We can solve the integral $\int\csc\left(x+45\right)^3dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+45$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part
$u=x+45$
Intermediate steps
4
Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by finding the derivative of the equation above
$du=dx$
Explain this step further
5
Substituting $u$ and $dx$ in the integral and simplify
$\frac{1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^3du$
6
Rewrite the trigonometric function $\csc\left(u\right)^3$ as the product of two lower exponents
$\frac{1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^2\csc\left(u\right)du$
7
We can solve the integral $\int\csc\left(u\right)^2\csc\left(u\right)du$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula
$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$
Intermediate steps
8
First, identify or choose $u$ and calculate it's derivative, $du$
$\begin{matrix}\displaystyle{u=\csc\left(u\right)}\\ \displaystyle{du=-\csc\left(u\right)\cot\left(u\right)du}\end{matrix}$
Explain this step further
9
Now, identify $dv$ and calculate $v$
$\begin{matrix}\displaystyle{dv=\csc\left(u\right)^2du}\\ \displaystyle{\int dv=\int \csc\left(u\right)^2du}\end{matrix}$
10
Solve the integral to find $v$
$v=\int\csc\left(u\right)^2du$
11
The integral of $\csc(x)^2$ is $-\cot(x)$
$-\cot\left(u\right)$
Intermediate steps
12
Now replace the values of $u$, $du$ and $v$ in the last formula
$\frac{1}{\sqrt{\left(2\right)^{3}}}\left(-\cot\left(u\right)\csc\left(u\right)-\int\csc\left(u\right)\cot\left(u\right)^2du\right)$
Explain this step further
Intermediate steps
13
Multiply the single term $\frac{1}{\sqrt{\left(2\right)^{3}}}$ by each term of the polynomial $\left(-\cot\left(u\right)\csc\left(u\right)-\int\csc\left(u\right)\cot\left(u\right)^2du\right)$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)\cot\left(u\right)^2du$
Explain this step further
14
Applying the trigonometric identity: $\cot\left(\theta \right)^2 = \csc\left(\theta \right)^2-1$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)\cot\left(u\right)^2du$
15
Applying the trigonometric identity: $\cot\left(\theta \right)^2 = \csc\left(\theta \right)^2-1$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)\left(\csc\left(u\right)^2-1\right)du$
16
Multiplying polynomials $\csc\left(u\right)$ and $\csc\left(u\right)^2-1$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\left(\csc\left(u\right)\csc\left(u\right)^2-\csc\left(u\right)\right)du$
Intermediate steps
17
Simplify the expression
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\left(\int\csc\left(u\right)^{3}du+\int-\csc\left(u\right)du\right)$
Explain this step further
Intermediate steps
18
Replace $u$ with the value that we assigned to it in the beginning: $x+45$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\left(\int\csc\left(u\right)^{3}du+\int-\csc\left(u\right)du\right)$
Explain this step further
19
Solve the product $\frac{-1}{\sqrt{\left(2\right)^{3}}}\left(\int\csc\left(u\right)^{3}du+\int-\csc\left(u\right)du\right)$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int-\csc\left(u\right)du$
Intermediate steps
20
The integral $\frac{-1}{\sqrt{\left(2\right)^{3}}}\int-\csc\left(u\right)du$ results in: $\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left(\csc\left(x+45\right)+\cot\left(x+45\right)\right)$
$\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left(\csc\left(x+45\right)+\cot\left(x+45\right)\right)$
Explain this step further
21
This integral by parts turned out to be a cyclic one (the integral that we are calculating appeared again in the right side of the equation). We can pass it to the left side of the equation with opposite sign
$\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left(\csc\left(x+45\right)+\cot\left(x+45\right)\right)$
22
Moving the cyclic integral to the left side of the equation
$\int\csc\left(u\right)^{3}du+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|$
$\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}+1\right)\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|$
Intermediate steps
$\frac{-1+\sqrt{\left(2\right)^{3}}}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|$
Explain this step further
25
Move the constant term $\frac{-1+\sqrt{\left(2\right)^{3}}}{\sqrt{\left(2\right)^{3}}}$ dividing to the other side of the equation
$\int\csc\left(u\right)^{3}du=\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)$
26
The integral results in
$\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)$
27
Gather the results of all integrals
$\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)$
28
As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$
$\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)+C_0$
Intermediate steps
$\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|+C_0$
Explain this step further
Final answer to the exercise
$\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|+C_0$