Exercise

$\int\frac{1}{\left(sinx+cosx\right)^3}dx$

Step-by-step Solution

1

Simplify $\frac{1}{\left(\sin\left(x\right)+\cos\left(x\right)\right)^3}$ into $\frac{\csc\left(x+45\right)^3}{\sqrt{\left(2\right)^{3}}}$ by applying trigonometric identities

$\int\frac{\csc\left(x+45\right)^3}{\sqrt{\left(2\right)^{3}}}dx$
2

Take the constant $\frac{1}{\sqrt{\left(2\right)^{3}}}$ out of the integral

$\frac{1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(x+45\right)^3dx$
3

We can solve the integral $\int\csc\left(x+45\right)^3dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+45$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x+45$
4

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by finding the derivative of the equation above

$du=dx$
5

Substituting $u$ and $dx$ in the integral and simplify

$\frac{1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^3du$
6

Rewrite the trigonometric function $\csc\left(u\right)^3$ as the product of two lower exponents

$\frac{1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^2\csc\left(u\right)du$
7

We can solve the integral $\int\csc\left(u\right)^2\csc\left(u\right)du$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$
8

First, identify or choose $u$ and calculate it's derivative, $du$

$\begin{matrix}\displaystyle{u=\csc\left(u\right)}\\ \displaystyle{du=-\csc\left(u\right)\cot\left(u\right)du}\end{matrix}$
9

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\csc\left(u\right)^2du}\\ \displaystyle{\int dv=\int \csc\left(u\right)^2du}\end{matrix}$
10

Solve the integral to find $v$

$v=\int\csc\left(u\right)^2du$
11

The integral of $\csc(x)^2$ is $-\cot(x)$

$-\cot\left(u\right)$
12

Now replace the values of $u$, $du$ and $v$ in the last formula

$\frac{1}{\sqrt{\left(2\right)^{3}}}\left(-\cot\left(u\right)\csc\left(u\right)-\int\csc\left(u\right)\cot\left(u\right)^2du\right)$
13

Multiply the single term $\frac{1}{\sqrt{\left(2\right)^{3}}}$ by each term of the polynomial $\left(-\cot\left(u\right)\csc\left(u\right)-\int\csc\left(u\right)\cot\left(u\right)^2du\right)$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)\cot\left(u\right)^2du$
14

Applying the trigonometric identity: $\cot\left(\theta \right)^2 = \csc\left(\theta \right)^2-1$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)\cot\left(u\right)^2du$
15

Applying the trigonometric identity: $\cot\left(\theta \right)^2 = \csc\left(\theta \right)^2-1$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)\left(\csc\left(u\right)^2-1\right)du$
16

Multiplying polynomials $\csc\left(u\right)$ and $\csc\left(u\right)^2-1$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\left(\csc\left(u\right)\csc\left(u\right)^2-\csc\left(u\right)\right)du$
17

Simplify the expression

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(u\right)\csc\left(u\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\left(\int\csc\left(u\right)^{3}du+\int-\csc\left(u\right)du\right)$
18

Replace $u$ with the value that we assigned to it in the beginning: $x+45$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\left(\int\csc\left(u\right)^{3}du+\int-\csc\left(u\right)du\right)$
19

Solve the product $\frac{-1}{\sqrt{\left(2\right)^{3}}}\left(\int\csc\left(u\right)^{3}du+\int-\csc\left(u\right)du\right)$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int-\csc\left(u\right)du$
20

The integral $\frac{-1}{\sqrt{\left(2\right)^{3}}}\int-\csc\left(u\right)du$ results in: $\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left(\csc\left(x+45\right)+\cot\left(x+45\right)\right)$

$\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left(\csc\left(x+45\right)+\cot\left(x+45\right)\right)$
21

This integral by parts turned out to be a cyclic one (the integral that we are calculating appeared again in the right side of the equation). We can pass it to the left side of the equation with opposite sign

$\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left(\csc\left(x+45\right)+\cot\left(x+45\right)\right)$
22

Moving the cyclic integral to the left side of the equation

$\int\csc\left(u\right)^{3}du+\frac{-1}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|$
23

Adding the integrals

$\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}+1\right)\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|$
24

Simplifying

$\frac{-1+\sqrt{\left(2\right)^{3}}}{\sqrt{\left(2\right)^{3}}}\int\csc\left(u\right)^{3}du=\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|$
25

Move the constant term $\frac{-1+\sqrt{\left(2\right)^{3}}}{\sqrt{\left(2\right)^{3}}}$ dividing to the other side of the equation

$\int\csc\left(u\right)^{3}du=\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)$
26

The integral results in

$\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)$
27

Gather the results of all integrals

$\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)$
28

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{\sqrt{\left(2\right)^{3}}}{-1+\sqrt{\left(2\right)^{3}}}\left(\frac{-1}{\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|\right)+C_0$
29

Expand and simplify

$\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|+C_0$

Final answer to the exercise

$\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\cot\left(x+45\right)\csc\left(x+45\right)+\frac{-1}{-1+\sqrt{\left(2\right)^{3}}}\ln\left|\csc\left(x+45\right)+\cot\left(x+45\right)\right|+C_0$

Try other ways to solve this exercise

  • Choose an option
  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Integrate by trigonometric substitution
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • Load more...
Can't find a method? Tell us so we can add it.
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Access in depth explanations with descriptive diagrams.

Choose between multiple solving methods.

Download unlimited solutions in PDF format.

Premium access on our iOS and Android apps.

Join 1M+ students worldwide in problem solving.

Choose the plan that suits you best:
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account