∫ze3xdx\int ze^{3x}dx∫ze3xdx
dydx(x+y2=y)\frac{dy}{dx}\left(\sqrt{x+y^2}=y\right)dxdy(x+y2=y)
tan(x)=yx+1450\tan\left(x\right)=\frac{y}{x+1450}tan(x)=x+1450y
x6−4x3+xx^6-4x^3+xx6−4x3+x
20−5000x220-\frac{5000}{x^2}20−x25000
(2−5).[4−3.(4−9)]−(2−7).[15−2.(9−4)]\left(2-5\right).\left[4-3.\left(4-9\right)\right]-\left(2-7\right).\left[15-2.\left(9-4\right)\right](2−5).[4−3.(4−9)]−(2−7).[15−2.(9−4)]
4x5−3x2+x−+12x3−1\frac{4x^5-3x^2+x-+1}{2x^3-1}2x3−14x5−3x2+x−+1
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!