Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Rewrite the exponent using the power rule $\frac{a^m}{a^n}=a^{m-n}$, where in this case $m=0$
Learn how to solve integration techniques problems step by step online.
$\int x^{-3}\ln\left(x\right)dx$
Learn how to solve integration techniques problems step by step online. Solve the integral of logarithmic functions int(ln(x)/(x^3))dx. Rewrite the exponent using the power rule \frac{a^m}{a^n}=a^{m-n}, where in this case m=0. We can solve the integral \int x^{-3}\ln\left(x\right)dx by applying integration by parts method to calculate the integral of the product of two functions, using the following formula. First, identify or choose u and calculate it's derivative, du. Now, identify dv and calculate v.