Exercise
$\int\frac{\left(y^{\frac{7}{2}}-y^{\frac{5}{3}}-y^{\frac{1}{4}}\right)}{\left(y^2\right)}dy$
Step-by-step Solution
Learn how to solve problems step by step online. Find the integral int((y^(7/2)-y^(5/3)-y^(1/4))/(y^2))dy. Expand the fraction \frac{\sqrt{y^{7}}-\sqrt[3]{y^{5}}-\sqrt[4]{y}}{y^2} into 3 simpler fractions with common denominator y^2. Simplify the resulting fractions. Simplify the expression. The integral \int\sqrt{y^{3}}dy results in: \frac{2\sqrt{y^{5}}}{5}.
Find the integral int((y^(7/2)-y^(5/3)-y^(1/4))/(y^2))dy
Final answer to the exercise
$\frac{12\sqrt[4]{y^{13}}-45\sqrt[12]{y^{17}}+40}{30\sqrt[4]{y^{3}}}+C_0$