Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
∫x+1x2+2x−3dx\int\frac{x+1}{x^2+2x-3}dx∫x2+2x−3x+1dx
x2+12>7xx^2+12>7xx2+12>7x
53 − {6−[(32−15+8)−22]−7}53\:-\:\left\{6-\left[\left(32-15+8\right)-22\right]-7\right\}53−{6−[(32−15+8)−22]−7}
−6254\sqrt[4]{-625}4−625
(7x2+5y3)2\left(7x^2+5y^3\right)^2(7x2+5y3)2
∫5sin(x)cos2(x)dx\int5sin\left(x\right)cos^2\left(x\right)dx∫5sin(x)cos2(x)dx
(x3 + 9)2cosx4(x4−5)6\frac{\left(x^{3\:}+\:9\right)^2}{cosx^4\left(x^4-5\right)^6}cosx4(x4−5)6(x3+9)2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!